首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   6篇
  国内免费   1篇
化学   99篇
晶体学   2篇
力学   15篇
数学   56篇
物理学   45篇
  2023年   1篇
  2021年   7篇
  2020年   9篇
  2019年   5篇
  2018年   8篇
  2017年   9篇
  2016年   8篇
  2015年   13篇
  2014年   13篇
  2013年   20篇
  2012年   14篇
  2011年   16篇
  2010年   12篇
  2009年   12篇
  2008年   14篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
81.
Abstract  The reaction of 1-[4-(piperidin-1-yl)benzylidene]thiosemicarbazide with hydrazonoyl chlorides afforded 1,3-thiazole derivatives. Cyclization of two compounds of the latter 1,3-thiazole by means of bromine in the presence of sodium acetate at room temperature gave 1,3-thiazolo[2,3-c]-1,2,4-triazole derivatives. The reaction of 2-cyano-3-(4-piperidin-1-ylphenyl)prop-2-enethioamide with hydrazonoyl chlorides under reflux in ethanol in the presence of triethylamine yielded 1,3-thiazoles. Treatment of 3-oxo-3-(piperidin-1-yl)propanenitrile with phenyl isothiocyanate in DMF, in the presence of KOH, at ambient temperature, resulted in the formation of 3-anilino-3-mercapto-2-(piperidin-1-ylcarbonyl)acrylonitrile which was reacted with hydrazonoyl chlorides to yield the corresponding 1,3,4-thiadiazole derivatives. Some of the newly synthesized compounds had significant anti-arrhythmic activity. Graphical Abstract     相似文献   
82.
3-Amino-1-phenyl-4,5-dihydro-1H-pyrazol-5-one (1) was used as starting material for the synthesis of a number of azo compounds 3a—3c and azomethine derivative 4. The deblocking of 3a—3c and 4 gave rise to 5a—5c and 6 in which a free amino was revealed. The diazonium salts of 5a—5c and 6 were coupled with several phenols to produce a number of bis azo compounds 7a—7c and 8a—8c with azomethine in position 4 and azoic group in position 3. The prepared dyes were structurally confirmed by elemental analysis, spectral methods and applied to different fibers (wool, polyester and blend of wool/polyester) as disperse dyes and their fastness properties were measured.  相似文献   
83.
Numerical investigations of an industrial gas turbine combustor were conducted in this paper. The studied combustion chamber has a high degree of geometrical complexity related to the injection system as well as the cooling system which consists of thousands of small holes (about 3390 holes) bored on the liner walls. The main aim of this study was to propose modifications into the liner cooling system that can enhance the protection of this critical component. The calculations were carried out using the industrial CFD code fluent 6.3. It was shown that the addition of rows of cooling holes in the primary zone of the liner leads to a reduction of the maximum liner metal temperature of 33%. Nevertheless, this modification causes an increase of the maximum gas temperature at the outlet of the combustion chamber of 12% which could be harmful to the turbine vanes. It was also shown that this increase can be controlled by the suppression of rows of cooling holes in the dilution zone.  相似文献   
84.
In this paper we continue with the investigation of the behavior of the integrated density of states of random operators of the form H ω =− ρ ω . In the present work we are interested in its behavior at 0, the bottom of the spectrum of H ω . We prove that it converges exponentially fast to the integrated density of states of some periodic operator . Being periodic, cannot exhibit a Lifshitz behaviour. This result relates to the result of S.M. Kozlov (Russ. Math. Surv. 34(4):168–169, 1979) and improves it. Research partially supported by the Research Unity 01/UR/ 15-01 projects.  相似文献   
85.
86.
Hatem Widyan 《Pramana》1999,53(6):1077-1080
It is shown that the minimal left-right symmetric model admits cosmic string and domain wall solutions.  相似文献   
87.
Mechanochemistry enables rapid access to boron imidazolate frameworks (BIFs), including ultralight materials based on Li and Cu(i) nodes, as well as new, previously unexplored systems based on Ag(i) nodes. Compared to solution methods, mechanochemistry is faster, provides materials with improved porosity, and replaces harsh reactants (e.g. n-butylithium) with simpler and safer oxides, carbonates or hydroxides. Periodic density-functional theory (DFT) calculations on polymorphic pairs of BIFs based on Li+, Cu+ and Ag+ nodes reveals that heavy-atom nodes increase the stability of the open SOD-framework relative to the non-porous dia-polymorph.

Mechanochemistry enables rapid access to boron imidazolate frameworks (BIFs), including ultralight materials based on Li and Cu(i) nodes, as well as new, previously unexplored systems based on Ag(i) nodes.

Mechanochemistry1–7 has emerged as a versatile methodology for the synthesis and discovery of advanced materials, including nanoparticle systems8–10 and metal–organic frameworks (MOFs),11–15 giving rise to materials that are challenging to obtain using conventional solution-based techniques.16–18 Mechanochemical techniques such as ball milling, twin screw extrusion19 and acoustic mixing20,21 have simplified and advanced the synthesis of a wide range of MOFs, permitting the use of simple starting materials such as metal oxides, hydroxides or carbonates,22,23 at room temperature and without bulk solvents, yielding products of comparable stability and, after activation, higher surface areas than solution-generated counterparts.24–29 The efficiency of mechanochemistry in MOF synthesis was recently highlighted by accessing zeolitic imidazolate frameworks (ZIFs)30,31 that were theoretically predicted, but not accessible under conventional solution-based conditions.17The advantages of mechanochemistry in MOF chemistry led us to address the possibility of synthesizing boron imidazolate frameworks (BIFs),32–34 an intriguing but poorly developed class of microporous materials analogous to ZIFs, comprising equimolar combinations of tetrahedrally coordinated boron(iii) and monovalent Li+ or Cu+ cations as nodes (Fig. 1A–C). Although BIFs offer an attractive opportunity to access microporous MOFs with lower molecular weights, particularly in the case of “ultralight” systems based on Li+ and B(iii) centers, this family of materials has remained largely unexplored – potentially due to the need for harsh synthetic conditions, including the use of n-butyllithium in a solvothermal environment.32–34Open in a separate windowFig. 1Structures of previously reported BIFs with: (A) zni-, (B) dia-, or (C) SOD-topology (M = Li, Cu); (D) tetrakis(imidazolyl)boric acids used herein for mechanochemical BIF synthesis; and (E) schematic representation of the herein developed mechanosynthesis of dia- and SOD BIF polymorphs based on Li, Cu or Ag metal nodes.We now show how switching to the mechanochemical environment enables lithium- and copper(i)-based BIFs to be prepared rapidly (i.e., within 60–90 minutes), without elevated temperatures or bulk solvents, and from readily accessible solid reactants, such as hydroxides and oxides (Fig. 1D and E). While the mechanochemically-prepared BIFs exhibit significantly higher surface areas than the solvothermally-prepared counterparts, mechanochemistry allows for expanding this class of materials towards previously not reported Ag+ nodes. The introduction of BIFs isostructural with those based on Li+ or Cu+ but comprising of Ag+ ions, enables a periodic density-functional theory (DFT) evaluation of their stability. This reveals that switching to heavier elements as tetrahedral nodes improves the stability of sodalite topology (SOD) open BIFs with respect to close-packed diamondoid (dia) topology polymorphs.As a first attempt at mechanochemically synthesis of BIFs, we targeted the synthesis of previously reported zni-topology LiB(Im)4 and CuB(Im)4 frameworks (Li-BIF-1 and Cu-BIF-1, respectively, Fig. 1A) using a salt exchange reaction between LiCl or CuCl with commercially available sodium tetrakis(imidazolyl)borate (Na[B(Im)4]) (Fig. 2A). Milling of LiCl and Na[B(Im)4] in a 1 : 1 stoichiometric ratio for up to 60 minutes led to the appearance of Bragg reflections consistent with the target Li-BIF-1 (CSD MOXJEP) and the anticipated NaCl byproduct. The reaction was, however, incomplete, as seen by X-ray reflections of Na[B(Im)4] starting material. In order to improve reactant conversion, we explored liquid-assisted grinding (LAG), i.e. milling in the presence of a small amount of a liquid phase (measured by the liquid-to-solid ratio η35 in the range of ca. 0–2 μL mg−1). Using LAG conditions with acetonitrile (MeCN, 120 μL, η = 0.5 μL mg−1) led to the complete disappearance of reactant X-ray reflections, concomitant with the formation of Li-BIF-1 alongside NaCl within 60 minutes.Open in a separate windowFig. 2(A) Reaction scheme for the mechanochemical synthesis of Li-BIF-1 by a salt metathesis strategy. Selected PXRD patterns for: (B) Na[B(Im)4] (C) LiCl, (D) simulated Li-BIF-1 (CSD MOXJPEP) and (E) synthesized BIF-1-Li by LAG for 60 minutes with MeCN (η = 0.5 μL mg−1), (F) CuCl, (G) simulated Cu-BIF-1 (CSD MOXJIT), and (H) synthesized BIF-1-Cu by LAG for 60 minutes with MeOH (η = 0.50 μL mg−1). Asterisks denote NaCl, a byproduct of the metathesis reaction. (Fig. 2B–E, also see ESI). The copper-based zni-CuB(Im)4 (Cu-BIF-1) was readily obtained from CuCl within 60 minutes using similar LAG conditions. We also explored LAG with methanol (MeOH), revealing that the exchange reaction to form NaCl took place with both LiCl and CuCl starting materials. With LiCl, however, the PXRD pattern of the product could not be matched to known phases involving Li+ and B(Im)4 (see ESI). With CuCl as a reactant, LAG with MeOH (η = 0.5 μL mg−1) cleanly produced Cu-BIF-1 alongside NaCl (see ESI).Next, we explored an alternative synthesis approach, analogous to that previously used to form ZIFs and other MOFs: an acid–base reaction between a metal oxide or hydroxide and the acid form of the linker: tetrakis(imidazolato)boric acid, HB(Im)4 (Fig. 3A).36–40 Neat milling LiOH with one equivalent of HB(Im)4 in a stainless steel milling assembly led to the partial formation of Li-BIF-1, as evidenced by PXRD analysis (see ESI). Complete conversion of reactants into Li-BIF-1 was achieved in 60 minutes by LAG with MeCN (η = 0.25 μL mg−1), as indicated by PXRD analysis (Fig. 3B–E), Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR), thermogravimetric analysis (TGA) in air, and analysis of metal content by inductively-coupled plasma mass spectrometry (ICP-MS) (see ESI).Open in a separate windowFig. 3(A) Reaction scheme for the mechanochemical synthesis of Li-BIF-1 using the acid–base strategy. Selected PXRD patterns for: (B) H[B(Im)4] (C) LiOH, (D) simulated Li-BIF-1 (CSD MOXJPEP), (E) synthesized BIF-1-Li by LAG for 60 minutes with MeCN (η = 0.25 μL mg−1), (F) Cu2O, (G) simulated Cu-BIF-1 (CSD MOXJIT), and (H) synthesized Cu-BIF-1 by ILAG for 60 minutes with MeOH (η = 0.50 μL mg−1) and NH4NO3 additive (5% by weight).Neat milling of HB(Im)4 with Cu2O under similar conditions gave a largely non-crystalline material, as evidenced by PXRD (see ESI). Switching to the ion- and liquid-assisted grinding (ILAG) methodology, in which the reactivity of a metal oxide is enhanced by a small amount of a weakly acidic ammonium salt, and which was introduced to prepare zinc and cadmium ZIFs from respective oxides,37–40 enabled the synthesis of Cu-BIF-1 from Cu2O. Specifically, PXRD analysis revealed complete disappearance of the oxide in samples obtained by ILAG with either MeOH or MeCN (η = 0.5 μL mg−1) in the presence of NH4NO3 additive (5% by weight, see ESI). Notably, achieving complete disappearance of Cu2O reactant signals also required switching from stainless steel to a zirconia-based milling assembly, presumably due to more efficient energy delivery.41 After washing with MeOH, the material was characterized by FTIR-ATR, TGA in air, and analysis of metal content by ICP-MS (see ESI).Whereas both the metathesis and acid–base approaches can be used to mechanochemically generate Li- and Cu-BIF-1, the latter approach has a clear advantage of circumventing the formation of the NaCl byproduct. Consequently, in order to further the development of mechanochemical routes to other BIFs, we focused on the acid–base strategy. As next targets, we turned to MOFs based on tetrakis(2-methylimidazole)boric acid H[B(Meim)4],36 previously reported32 to adopt either a non-porous diamondoid (dia) topology (BIF-2) or a microporous sodalite (SOD) topology (BIF-3) with either Li+ or Cu+ as nodes (Fig. 4). Attempts to selectively synthesize either Li-BIF-2 or Li-BIF-3 by neat milling or LAG (using MeOH or MeCN as liquid additives) with LiOH and a stoichiometric amount of HB(Meim)4 were not successful. Exploration of different milling times and η-values produced only mixtures of residual reactants with Li-BIF-2, Li-BIF-3, and/or not yet identified phases (see ESI). Consequently, we explored milling in the presence of 2-aminobutanol (amb), which is a ubiquitous component of solvent systems used in the solvothermal syntheses of BIFs.32,33 Gratifyingly, using a mixture of amb and MeCN in a 1 : 3 ratio by volume as the milling liquid led to an effective strategy for the selective synthesis of both the dia-topology Li-BIF-2 (CSD code MOXKUG), and the SOD-topology Li-BIF-3 (CSD code MUCLOM). The selective formation of phase-pure samples of Li-BIF-2 and Li-BIF-3 was confirmed by PXRD analysis, which revealed an excellent match to diffractograms simulated based on the previously reported structures (Fig. 4B–G). Systematic exploration of reaction conditions, including time (between 15 and 60 minutes) and η value (between 0.25 and 1 μL mg−1) revealed that the open framework Li-BIF-3 is readily obtained at η either 0.75 or 1 μL mg−1 after milling for 45 minutes or longer (Fig. 4B–G, also see ESI).§ Lower η-values of 0.25 and 0.5 μL mg−1 preferred the formation of the dia-topology Li-BIF-2, which was obtained as a phase-pure material upon 60 minutes milling at η = 0.5 μL mg−1, following the initial appearance of a yet unidentified intermediate. The preferred formation of Li-BIF-2 at lower η-values is consistent with our previous observations that lower amounts of liquid promote mechanochemical formation of denser MOF polymorphs.37Open in a separate windowFig. 4(A) Reaction scheme for the mechanochemical synthesis of Li-BIF-3. Comparison of selected PXRD patterns for the synthesis of Li-BIF-2 and Li-BIF-3: (B) H[B(Meim)4] reactant; (C) LiOH reactant; (D) simulated for Li-BIF-3 (CSD MUCLOM); (E) simulated for Li-BIF-2 (CSD MOXKUG); (F) Li-BIF-3 mechanochemically synthesized by LAG for 60 minutes with a 1 : 3 by volume mixture of amb and MeCN (η = 1 μL mg−1); and (G) Li-BIF-2 mechanochemically synthesized by LAG for 60 minutes with a 1 : 3 by volume mixture of amb and MeCN (η = 0.5 μL mg−1). Comparison of selected PXRD patterns for the synthesis of Cu-BIF-2 and Li-BIF-3: (H) Cu2O; (I) Cu-BIF-3 (CSD MOXJOZ); (J) Cu-BIF-2 (CSD MUCLIG); (K) Cu-BIF-3 mechanochemically synthesised by ILAG for 60 minutes using NH4NO3 ionic additive (5% by weight) and MeOH (η = 1 μL mg−1); and (L) mechanochemically synthesised Cu-BIF-2 by ILAG for 90 minutes using NH4NO3 ionic additive (5% by weight) and MeOH (η = 0.5 μL mg−1).Samples of both Li-BIF-2 and Li-BIF-3 after washing with MeCN were further characterized by FTIR-ATR, TGA in air, and analysis of metal content by ICP-MS (see ESI). Nitrogen sorption measurement on the mechanochemically obtained Li-BIF-3, after washing with MeCN and evacuation at 85 °C, revealed a highly microporous material with a Brunauer–Emmett–Teller (BET) surface area of 1010 m2 g−1 (Fig. 5A), which is close to the value expected from the crystal structure of the material (1200 m2 g−1, 32 For direct comparison with previous work,32 we also calculated the Langmuir surface area, revealing an almost 40% increase (1060 m2 g−1) compared to samples made solvothermally (762.5 m2 g−1) (Fig. 5A, inset).Experimental Brunauer–Emmett–Teller (BET) and Langmuir surface area (in m2 g−1) of mechanochemically synthesized SOD-topology BIFs, compared to previously measured and theoretically calculated values, along with average particle sizes (in nm) established by SEM and calculated energies (in eV) for all Li-, Cu-, and Ag-BIF polymorphs. The difference between calculated energies for SOD- and dia-polymorphs in each system is given as ΔE (in kJ mol−1)
MaterialSurface area (m2 g−1)Particle sizeb (nm)Electronic energy per formula unit (eV)ΔE (kJ mol−1)
Mechanochemical, BETMechanochemical, LangmuirPrior work, Langmuir 32Theoreticala
dia-Li-BIF-2−2679.17414.25
SOD-Li-BIF-310101060762.51200217 (n = 24)−2679.026
dia-Cu-BIF-2−3417.0919.67
SOD-Cu-BIF-39351196182.31100611 (n = 500)−3416.991
dia-Ag-BIF-2−4738.9598.66
SOD-Ag-BIF-3102012051170500 (n = 25)−4738.869
Open in a separate windowaCalculated using MOF Explorer (see ESI).bDetermined from SEM measurements, where n corresponds to number of particles observed.Open in a separate windowFig. 5BET adsorption plots for: (A) Li-BIF-3, showing a surface area of 1010 m2 g−1 and (B) Cu-BIF-3, showing a surface area of 935 m2 g−1. The insets in (A) and (B) are representative SEM images of the mechanochemically prepared BIF samples, with scale bars corresponding to 4 μm and 5 μm shown in white.The analogous copper(i)-based BIF-2 and BIF-3 frameworks were readily accessible by ILAG, by controlling the volume of the liquid additive and milling time (Fig. 4H–L, also see ESI). Similarly to our previous studies of ZIFs,17,24,37,39 increased milling times preferred the formation of the close-packed polymorph, dia-topology Cu-BIF-2. While the PXRD pattern of the reaction mixture after 60 minutes ILAG with MeOH (η = 0.5 μL mg−1) and NH4NO3 (5% wt/wt) indicated the presence of the SOD-topology Cu-BIF-3, longer milling led to the appearance of the dia-phase (see ESI). The materials were identified through comparison of experimental PXRD patterns to those simulated from published structures (CSD codes MUCLIG and MOXJOZ for Cu-BIF-2 and Cu-BIF-3, respectively).32 Quantitative synthesis of Cu-BIF-2 from Cu2O was readily accomplished by ILAG for 90 minutes (Fig. 4H–L). Following washing and drying, the products were characterized by PXRD, FTIR-ATR, TGA in air and ICP-MS elemental analysis of metal content.In order to achieve the synthesis of phase-pure microporous Cu-BIF-3, reaction conditions were modified by increasing η to 1 μL mg−1. This modification enabled the reproducible and quantitative synthesis of Cu-BIF-3 in 60 minutes milling (Fig. 4H–L), confirmed by PXRD, FTIR-ATR, TGA and elemental analysis of metal content (see ESI). Analyses by SEM and nitrogen sorption were performed on the mechanochemical product after washing and drying in vacuo at 85 °C, revealing that the sample consists of sub-micron particles and exhibits a high BET surface area of 935 m2 g−1, which is close to the theoretically expected value of 1100 m2 g−1 (Fig. 5B). To enable direct comparison with previously reported work,32 we also calculated the Langmuir surface area, revealing a 7-fold increase (1196 m2 g−1) compared to samples made solvothermally (182.3 m2 g−1) (), i.e. 34% lower compared to the mechanochemically synthesized sample, illustrating a clear benefit of mechanochemistry in providing a simpler, more efficient synthesis, as well as materials of improved porosity.32,42The mechanochemical approaches to Li- and Cu-based BIFs are surprisingly simple compared to previously reported solvothermal methods,32,33,42 not only avoiding bulk solvents and high temperatures (85 °C for Li-based, 120 °C for Cu-based BIFs), but also enabling the use of simple, easily handled solids LiOH and Cu2O as starting materials compared to, for example, n-BuLi.42 Notably, while the reported solvothermal synthesis of these materials also requires the use of amb for the preparation of both Li- and Cu-BIFs, the use mechanochemical conditions enabled amb-free synthesis of copper-based BIFs. Such simplifications of the synthetic procedure encouraged us to explore the possibility to extend this family of materials towards previously not reported silver(i) derivatives.As a starting material for the synthesis of Ag(i)-based BIFs we focused on Ag2CO3, generated in situ from readily accessible AgNO3 and K2CO3. One-pot milling reaction of HB(Meim)4, AgNO3, and K2CO3 in the respective stoichiometric ratios 1 : 1 : 1/2, using MeCN as the milling additive (η = 0.25 μL mg−1) readily produced the targeted AgB(Meim)4 material along with the side product KNO3 (Fig. 5, also see ESI). Specifically, analysis of the reaction mixtures by PXRD revealed that, similar to the lithium and copper(i) analogues,32 the silver-based BIF appears in two polymorphs which could be selectively synthesized by varying the milling time. The BIF products were readily separated from the KNO3 by-product after sequential washing with cold MeOH and acetone, and their respective structures were further validated by structure determination from PXRD data measured on washed and dried materials.Specifically, milling for 30 minutes led to the formation of a material (Ag-BIF-3) which, based on PXRD analysis, was isostructural to the SOD-topology Li-BIF-3 and Cu-BIF-3. Consequently, the crystal structure of Ag-BIF-3 (Fig. 5A) was determined through Rietveld refinement of a structural model based on the Cu-BIF-3 structure, in which the copper(i) sites have been replaced by Ag(i), giving rise to a cubic unit cell (space group P4̄3n as in the analogous Cu-BIF-3 and Li-BIF-3 structures) with a = 16.6659(3) Å. Composition of Ag-BIF-3 was verified by TGA/DSC and elemental analysis of metal content (see ESI). The microporous nature of the material was confirmed by N2 sorption analysis, which revealed a high BET surface area of 1020 m2 g−1. Sample analysis by SEM revealed dense aggregates of particles, with sizes below 100 nm (Fig. 5). The 13C cross-polarisation magic angle spinning (CP-MAS) solid-state nuclear magnetic resonance (ssNMR) spectrum of Ag-BIF-3 was consistent with the crystal structure, revealing three signals in the imidazolate region 100–160 ppm and the –CH3 group signal at ∼16 ppm (Fig. 6).Open in a separate windowFig. 6(A) Rietveld refinement of Ag-BIF-3 with difference plot shown in grey. (B) Rietveld refinement of Ag-BIF-2 with difference plot shown in grey. (C) BET adsorption plot Ag-BIF-3 showing a surface area of 1020 m2 g−1 and a SEM image of a representative sample (scale-bar 1 μm). Comparison of measured and simulated 13C CP-MA ssNMR spectra for silver-based BIFs: (D) calculated for Ag-BIF-3, (E) measured for Ag-BIF-3, (F) calculated for Ag-BIF-2 and (G) measured for Ag-BIF-2.Milling for 60 minutes under otherwise identical conditions led to a material whose PXRD pattern was very similar, but not identical, to that of dia-topology Li-BIF-2 and Cu-BIF-2 materials, with additional Bragg reflections indicating possible lower symmetry. The structure of this material (Fig. 6B) was determined by simulated annealing structure solution from PXRD data, revealing a monoclinic (space group P21) unit cell with a = 7.5198(4) Å, b = 16.3763(9) Å, c = 7.5876(4) Å and β = 90.136(6)o. In contrast to structures of Li-BIF-2 and Cu-BIF-2, which all exhibited one symmetrically independent Meim ligand in a tetragonal I4̄ space group, the structure of Ag-BIF-3 displays each tetrahedral node surrounded by four symmetrically non-equivalent imidazolate ligands. This much higher multiplicity is clearly reflected by the ssNMR spectrum of the material, validating the structure (Fig. 6). The composition of the material was similarly confirmed by TGA and by elemental analysis of the metal content (see ESI). For both Ag-BIF-2 and Ag-BIF-3 the measured 13C ssNMR chemical shifts were consistent with those calculated from the herein determined crystal structures (Fig. 6D–G). Notably, while materials based on silver(i) ions are often expected to be light sensitive, the herein reported Ag-BIF-2 and Ag-BIF-3 both appeared unchanged following six months exposure storage in a transparent vial on the bench.The crystal structures of Li-, Cu- and Ag-based BIFs provide a unique opportunity to evaluate the effect of changes in the metal node on the relative stability of BIF polymorphs with SOD- and dia-topology across three metals.43–45 The calculations were done using CASTEP plane-wave density-functional theory (DFT)46 code. The previously published crystal structures of Li- and Cu-BIFs with Meim linkers, as well as the structures of Ag-BIFs herein determined, were geometry-optimized using the PBE47 functional combined with many-body dispersion (MBD*)48–50 correction scheme. The PBE + MBD* approach has previously shown excellent agreement with experimental calorimetric measurements of ZIF polymorphs,24 therefore we expected the same approach to perform reliably for the structures of BIFs. In addition to calculating the relative energies of SOD- and dia-polymorphs, we have performed Gauge Including Projector Augmented Waves (GIPAW)51 simulation of the solid-state NMR spectra of Ag-BIFs to compare the simulated spectra with their experimental counterparts, confirming the low symmetry Ag-BIF-2 structure derived from PXRD data (Fig. 6D–G).Comparison of calculated energies reveals that increasing the atomic number of the metal node results in increased stabilization of the SOD-topology open framework with respect to the close-packed dia-polymorph. The energy differences (ΔE) between SOD- and dia-topology polymorphs for each pair of Li-, Cu-, and Ag-based frameworks are shown in 52–54The simulated ssNMR spectra of Ag-BIF-2 and Ag-BIF-3 showed excellent agreement with the experiment (Fig. 6) in terms of overall chemical shift and the number of distinct NMR signals arising from the crystallographic symmetry. The spectrum of the SOD polymorph is consistent with a single symmetrically unique Meim linker, while the signal splitting found in the spectrum of the dia-polymorph corresponds to four distinct 2-methylimidazolate units. The NMR simulation fully supports the structural models derived from PXRD data, with calculated chemical shifts underlining the accuracy of the herein used theoretical approach.  相似文献   
88.
We first describe all positive bounded solutions of where \input amstex \loadmsbm $(y,s)\in \Bbb R^N\times \Bbb R$ , 1 < p, and (N − 2)pN + 2. We then obtain for blowup solutions u(t) of uniform estimates at the blowup time and uniform space-time comparison with solutions of u′ = up. © 1998 John Wiley & Sons, Inc.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号